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ABSTRACT. Statistical predictability and spectra of mean monthly and annual water levels
(MMWL and MAWL) of Lake Erie at Cleveland, Ohio, 1860-1988, are studied within the frame-
work of the Kolmogorov-Wiener theory of extrapolation using AR modeling and the theory of non-
stationary product random processes in order to assess the attainable quality of least-squares predic-
tions of water levels. MMWL are shown to possess relatively high predictability due to a strong
seasonal cycle in water level variations, with predictability limits extending up to 12 months. MAWL
reveal a time-dependent structure in the mean value, variance, and spectrum which can be ascribed,
among other reasons, to a climatic change. Their predictability is quite low (predictability limit not
more than 1 or 2 years) and cannot be improved by applying other techniques of scalar time series
extrapolation. The uncertainties in water level predictions should be taken into account quantita-
tively when making decisions which depend upon hydrological parameters.

INDEX WORDS: Lake levels, statistical predictability, Box-Jenkins modeling, non-stationary pre-

diction problem.

INTRODUCTION

The purpose of this study is to statistically analyze
the basic properties of Lake Erie water level varia-
tions as represented by the time series of monthly
water level heights at Cleveland, Ohio, from 1860
to 1988. The properties to be studied include spec-
tra and statistical predictability parameters such as
the relative prediction error and predictability limit
at time steps of 1 month and 1 year. The knowledge
of these properties is essential to better understand
the mechanisms of water level variations and to
improve the efficiency of decision-making process
related to changes in water levels. The techniques
of time series analysis used in this study lie mostly
within the framework of Kolmogorov-Wiener’s
theory of extrapolation and Box and Jenkins’
autoregressive modeling (including maximum
entropy spectral analysis).

In accordance with the above-stated goals of the
study, this article consists of two parts which con-
tain the results of studying mean monthly and
annual water levels.
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TABLE 1. Major statistical parameters of mean
monthly water levels, m.

Parameter 1860-1988 1860-1924 1925-1988
Linear trend* .011 -.049 113
Trend’s rms error* .0019 .0037 .0049
Mean value 173.92 173.91 173.94
RMS .332/.329  .260/.226 .396/.305

*(Meters per month) x 100

MORE ABOUT THE INITIAL DATA

The time series of monthly water level (MMWL)
heights of Lake Erie at Cleveland, Ohio, is shown
in Figure 1. It is easily seen that the time series is
not stationary with respect to the mean value; spe-
cifically, it can be assumed that each half contains
statistically significant linear trends (see Table 1),
probably related to changes in the inflow to the
lake through the Detroit River. However, the anal-
ysis of such trends lies outside the scope of the
study at its present stage. Therefore, the linear
trend(s) will be removed so that the remaining
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FIG. 1. Lake Erie mean monthly water levels, Cleve-
land, Ohio, 1860-1988.

part(s) of the time series will be regarded as sta-
tionary with respect to the mean value. Table 1,
also contains some other statistical parameters of
the time series.

Thus, the root mean square (RMS) estimates,
after deleting the linear trends from the two parts
of the time series (shown in the denominators),
suggest that the time series as a whole cannot be
regarded as stationary. In fact, the hypothesis of
stationarity should be rejected at a significance
level of 0.01 according to the variance ratio test.

Other statistical properties of the time series
such as its correlation function or spectral density
and predictability parameters have also undergone
a change from the first to the second half of the
time series, though less pronounced.

With this in mind, we will first study the proper-
ties of the second half of the time series regarded as
a sample of a stationary random process by analyz-
ing its properties at relatively small time scales (up
to about 1 year).

FORECASTING MONTHLY WATER LEVELS

Probability Distribution Function

In the present context, the information about the
probability distribution function (PDF) of the time
series is necessary in order to (a) estimate the appli-
cability of linear Gaussian models, and (b) calcu-

late the confidence bounds for the extrapolation
function of water levels. When the seasonal trend
is removed, MMWL have a probability distribu-
tion which is close to Gaussian. Though the pres-
ence of the trend will definitely affect this result,
we will still assume, for our problem, that its PDF
is close to Gaussian. This assumption will not be
valid for solving problems which depend heavily
upon the choice of a probability distribution
function.

It should also be noted that the second half of
the time series, from 1925 to 1988, is not stationary
because its properties are also time-dependent.
However, the changes are relatively slow and, as
we are interested in the small time scale (monthly)
properties, this phenomenon will be ignored at this
stage.

Spectral Density and Statistical Predictability

The linear parametric autoregressive-moving aver-
age (ARMA) models introduced by Box and
Jenkins (1976) are widely used to describe hydro-
logical time series in the time domain (Salas et a/
1980). However, the maximum entropy approach
in spectral analysis which leads to autoregressive
(AR) approximations to the time series is practi-
cally unknown in hydrology. It is not used in Bras
and Rodriguez-Iturbe (1985), for example. We will
summarize some of its properties below (Jaynes
1982).

1. The approach allows one to choose a station-
ary random process for a given Gaussian time
series to which this series belongs with the highest
possible probability.

2. It is most effective in studying short time
series, which is usually the case in hydrology and
climatology.

3. The maximum entropy spectral estimation
leads to an immediate and simple solution of the
time series least-squares linear prediction problem
within the framework of Kolmogorov-Wiener
theory.

4. As the number of AR parameters which
describe the time series’ properties is usually small,
the resulting estimates of its spectrum, correlation
function, and predictability parameters are rela-
tively reliable statistically.

Note that these properties hold for multi-variate
time series as well, and thus the approach is effec-
tive in studying the relations between different
time series (Privalsky 1988a).

Consider first the estimate of water levels spec-
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FIG. 2. Spectrum of mean monthly water levels at
Cleveland, Ohio, 1925-1988.

trum obtained by the maximum entropy technique.
The best AR model according to four criteria
including Akaike’s AIC proved to be the model of
order p = 64 [i.e., AR(64)]. Its spectrum is shown
in Figure 2. The most important features of the
spectrum seem to be its fast decrease with fre-
quency, the presence of seasonal trend, and its har-
monics. This means that the predictability of the
time series will be rather high at small lead times
due to the strong seasonal trend, while the long-
range prediction will depend upon the presence of
high-energy low-frequency components rather
than upon any “cycles.” Note that the changes of
the spectrum from 1925-1956 to 1957-1988 are not
large.

Several measures of statistical predictability can
be introduced, the most important one being the
relative prediction error, or RPE, d(r) = D(7)/
D(), where D(7) is the mean square prediction
error at lead time 7. In the stationary case, D(o)
coincides with the time series variance ¢2. Thus,
d(7) is a monotonically non-decreasing function of
7 satisfying the inequality 0 < d(z) < 1. The qual-
ity of prediction decreases with growing d(7) and,
therefore, another measure of predictability is
given by the lead time 7, which corresponds to a
given value of d(7) ~ 1. Predictions at higher lead

TABLE 2. Parameters of seasonal multiplicative
SAR(2,5) model.

Parameter Estimate Standard Error
?, 1.248 .035
b, ~.292 .035
?, .168 .036
b, .201 .036
b, .164 .036
o, .090 .037
s .195 .036

MEAN 173.80 m .10 m
0 1.40 m
g, 067 m

times, 7 > 7., are regarded as too inaccurate. The
choice of 7, depends upon the specific problem at
hand. It should play an important role in decision-
making. This value is called the limit of statistical
predictability (Privalsky 1983) or predictability
horizon (Parzen and Newton 1984). The correla-
tion coefficient p(7) between the actual and pre-
dicted values of water levels is: p(7) = [1 - d(7)]'>.

As the time series of monthly water levels con-
tains a strong seasonal trend, the class of AR
models to be fitted to it should contain a seasonal
operator. We chose to approximate the time series
with seasonal multiplicative AR models because
the moving average operator may cause computa-
tional instability. The best model of this type for
monthly levels, x,, proved to be SAR(2,5). The first
digit in the parentheses is the order of the non-
seasonal AR operator and the second is the sea-
sonal one with period s = 12 months:

2 5
[1- Teplli- Zeplx = 6+a O
j= i=

The model’s parameters are shown in Table 2
where 62 = D(1) is the variance of the innovation
sequence a, which coincides with the 1-month mean
square prediction error.

The predictability measures are shown in Figure
3. As seen from the figure, RPE d(1) is rather small
for both models and remains below the 0.5-0.6
level up to lead time 7 = 12 months. Respective
values of correlation coefficient are p(1) = .97
while p(12) stays between 0.6 and 0.7. These pre-
dictability properties are about the same for the
AR(64) model.

If, as is usually done in geophysics, we assume vy
= 0.9, the limit of statistical predictability will



LAKE ERIE WATER LEVEL VARIATIONS 239

1.0

T

o
o)

Lraaea b aaasig

g
o

;f/ R
|
»‘{
90% Prediction
Confidence Band, m

e
>

(BRSNS E NN SN

Relative Prediction Error (RPE)
and Correlation Coefficient(R)
=)
N

INSUNNE!

0.0 LONLAN B BN (NS A I S B A A N R S S LR N O LA A TTTT

0 5 10 15 20 25 30 35 40
Lead Time {months)

FIG. 3. Relative prediction error (RPE) and correla-
tion coefficient (R) between the actual and predicted
mean monthly water levels of Lake Erie at Cleveland,
Ohio, 1925-1988, model SAR(2, 5).

extend to 26 months and over 40 months for
SAR(2, 5) and AR(64) models, respectively. Thus,
monthly water levels of Lake Erie possess rela-
tively high statistical predictability properties.

Several remarks should be made at this point.
First, due to the estimation errors, the actual pre-
dictability will be lower (Box and Jenkins 1976).
Consequently, the AR(64) model which contains 64
coefficients against 7 coefficients for the SAR(2, 5)
model should probably be rejected. Second, the
absolute 100(1 - )% prediction error

€(7) = Tp. (7)o 2

where «, the significance level, is actually rather
large. For o = 0.1, it equals + /- 0.1 and + /- 0.3
m at lead times 7 = 1 and 7 = 12 months, respec-
tively (Fig. 3). Finally, it should be remembered
that no other linear (or non-linear, assuming Gaus-
sianity) predictions based upon the past values of
this time series can lead to smaller prediction
errors. An example of actual predictions shown in
Figure 4 confirms that MMWL at Cleveland can be
predicted rather accurately up to lead times 7 = 10
months.

In summing up the results of the study at this
stage, it can be said that:
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FIG. 4. Forecasting Lake Erie mean monthly water
levels at Cleveland, Ohio, 1925-1988, model SAR(2, 5).

(a) as long as we are interested in short-term
(several months) statistical properties and predic-
tions of Lake Erie water levels at Cleveland, Ohio,
it seems advisable to use only the second part of
the time series;

(b) within the framework of stationary seasonal
models, the time series is best approximated by a
multiplicative seasonal AR model SAR(2, 5) plus a
linear trend;

(c) complete and rigorous solution of respective
prediction problems within the framework of the
Kolmogorov-Wiener theory reveals relatively high
statistical predictability of this process. Respective
confidence intervals should serve as a basis for
decisions concerning engineering problems related
to water level variations.

FORECASTING MEAN ANNUAL
WATER LEVELS

Even after the piecewise linear trend is removed
from the time series of mean annual water levels
(MAWL), 1860 to 1988 (solid curve in Fig. 5), the
resulting random sequence cannot be regarded as
stationary because its variance is obviously time-
dependent. This phenomenon is related to changes
in the lake’s water budget constituents which may
be caused, among other factors, by a climatic
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FIG. 5. Lake Erie mean annual water levels, Cleve-
land, Ohio, 1860-1988. Linear trends are removed.

change. As long as we deal with water level data
exclusively, no physically reasonable explanation
for this change of properties can be suggested.
Leaving aside possible reasons for this change, we
can and should study this time series as a sample of
a non-stationary random process. In order to do
this, the nature of its non-stationarity must be
defined.

Whatever the reason for the change of the pro-
cess’ structure can be, its variance can hardly
increase indefinitely. It is reasonable to assume
that we are now in a transition period from one
climatic regime to another; consequently, the new
stationary regime will eventually be reached at
some distant time in the future. However, as we
will be interested in time scales which do not
exceed a decade, the parameters of the new regime
which cannot be deduced from the time series of
water levels are not important for our problem. It
seems safe to assume that we are dealing with a
product non-stationary process of the form

x, = a(ty, €))

where u, is a stationary random process with zero
mean and unit variance, «(t) a given “slow” func-
tion of time. As in the previous discussion, the
latter can be written in the form
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FIG. 6. Plot of fitted model for RMS of MAWL of
Lake Erie at Cleveland, Ohio.

alt) = A-Be©, t=0, (4

so that the variance of water levels equals (A - B)?
and A? as t tends to zero and infinity,
respectively.

Parameters A, B, and C can be estimated
through short-term (for example, over five 25-year
intervals) estimates of water level variance. The
results of this procedure are shown in Figure 6.
The values of respective parameters are: A = .37
(+/-.02), m, B =0.26 (+/-.03) m, and C =
.010 (+ /- .003) year-! with the determination coef-
ficient, R? = ,92. (RMS of respective estimates are
given in the parentheses.) It should be noticed here
that though the value (A - B) can be chosen on the
basis of the existing water level observations, the
value A which characterizes the water level vari-
ance in a distant future has been chosen arbitrarily
as we have no information about the effect of cli-
matic change upon water levels. An estimate of A
can be obtained by further developing the
approach used by Croley (1990) to evaluate the
impact of a climatic change upon the hydrological
regime of the Great Lakes Basin and then applying
the techniques developed by Privalsky (1988b).

Dividing the time series of annual water levels by
a(t), one arrives at the time series of variance-
stationary process, u,, (dashed curve in Fig. 5),
which can then be analyzed statistically. The best
AR approximation to this series is



LAKE ERIE WATER LEVEL VARIATIONS 241

N
N “lm | \°°

FIG. 7. Time-dependent spectrum of MAWL of Lake
Erie at Cleveland, Ohio.

Be— Duph = € &)

where ¢ = 0.61, ¢ is a sequence of identically dis-
tributed and mutually independent random vari-
ables with zero mean and variance o* = 1 - ¢,,.
Now the properties of non-stationary model (3)
with a(t) and g, given by equations (4) and (5) can
be studied analytically through respective non-
stationary spectra (Bendat and Piersol 1986).
Keeping the purpose of this research in mind, we
will only discuss the estimated time-dependent
spectrum of MAWL and the predictability
problem.

As seen from Figure 7, the evolution of MAWL
spectrum with time is not very prominent and can
probably be explained just by the sampling varia-
bility of individual estimates. (This refers, in par-
ticular, to a broad peak at f = 0.2 cpy in the spec-
trum estimate for the last 25 years.) Generally, the
spectrum is rather flat and the energy is decreasing
with growing frequency. This means that the statis-
tical predictability of MAWL will be rather small
even for the unit lead time 7 = 1 year. Its quantita-
tive measure can be obtained in the following man-
ner. Substituting t + 7 for t and rewriting equation
(5) in the form

m = (1-¢,B)e, ©

where B is the backward shift operator, then sub-
stituting equations (4) and (6) into equation (3)
leads, after some simple algebra, to the following
expression for future water levels x,, :

Xt+‘r = [A - Be_C(t+1)](6t+1+¢let+-r—l + ¢1261+7—2+ .. ') =

oo
= [A-Be ™ ¥ e, @)
i=0

where ; = ¢/. As ¢ is a zero mean white noise
sequence, its least-squares predictions, e(7) = 0
for 7 > 0, while previous values ¢,_, fort < k can
be calculated from previous predictions and obser-
vations (Box and Jenkins 1976). Therefore, least-
squares predictions x,(7) of x, at lead times r are

x(7) = [A-Be 7] T e, ®

j=r1

Subtracting eq. (8) from eq. (7) gives prediction
error 4,(7) at time t and lead time 7:

T-1
6(7) = [A-Be““] ¥ e, )]
j=0

so that the prediction mean square error

7-1
D(7) = <82(t)> = [A-Be<+ £ y2 (10)
i=0

with the angle brackets meaning ensemble averag-
ing. Remembering that ¥, _,l' and 62 = (1 - ¢.),
one obtains the following expression for the mean
square prediction error:

D7) = [A-Be 7] (1 - ¢,). (11)

Now, the prediction algorithm in this non-
stationary case will contain the following steps:

(@) calculate predicted annual water levels x,(7)
by predicting u,, , as a first order AR process, mul-
tiply the result by a(t + 7), and add the linear
trend;

(b) compute mean square prediction error D,(7)
and respective confidence limits, x(7) = x(7) %
Har2D, (7).

As seen from Figure 8, statistical predictability
of annual water levels with the two linear trends
deleted is indeed small for the next decade. Both
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FIG. 8. Relative prediction error (RPE) and correla-
tion coefficient (R) between the actual and predicted
mean annual water levels of Lake Erie at Cleveland,
Ohio, 1925-1988, non-stationary product model.

RPE and correlation coefficient at 1 year lead time
equals about 0.6, while the limit of statistical pre-
dictability is reached in 2 years, by 1991.

CONCLUSIONS

1. Both mean monthly and annual water revel var-
iations of Lake FErie at Cleveland, Ohio, from 1860
to 1988, cannot be regarded as a sample of a sta-
tionary random process. The non-stationarity is
caused by the presence of a strong seasonal trend
in mean monthly levels as well as by the time-
dependent mean value and variance. Thus, the
properties of the time series, including its statistical
predictability, as well as its prediction problem,
should be studied within the framework of respec-
tive non-stationary approximations.

2. Taking into account the fact that the time
series is relatively short, its properties should be
studied, whenever possible, by using the tech-
niques of time series analysis which are designed
for dealing with short time series in both the time
and frequency domains such as AR-modeling and
maximum entropy spectral analysis. (This is true
only when there is no strong evidence of a non-
linear or long-memory behavior of the time
series.)

3. The part of the MMWL time series between

1925 and 1988 can be treated, as a first approxima-
tion, as a sample of a periodically-correlated ran-
dom process. The best stationary approximation to
this time series seems to be a seasonal multiplica-
tive AR sequence SAR(2, 5) which contains two
nonseasonal and five seasonal coefficients and
possesses relatively high statistical predictability
caused by the presence of a strong seasonal trend.
The limit of statistical predictability for MMWL is
reached in about 2 years. As the unit lead time 7 =
1 month, the correlation coefficient p(1) between
the actual and predicted MMWL exceeds 0.9 while
the absolute value of respective 90% confidence
bound amounts to about +/~ 0.1 m. For 7 = 6
and 7 = 12 months, these values change to 0.8 and
+/-0.2m and to 0.6 and 0.3 m. Respective confi-
dence bands and probabilities must be taken into
account in the decision-making process.

4. The sequence of MAWL from 1860 to 1988
can be regarded as a mixture of a piecewise linear
trend and a non-stationary product random pro-
cess with the stationary part represented by an AR
model of order 1. The deterministic product func-
tion which describes the non-stationary part of the
process can be given, as a first approximation, in
the form of a logistic curve. Its physical interpreta-
tion may include the transition between two sta-
tionary states which corresponds to two different
stationary climates.

5. When this structure is assumed for MAWL,
its statistical predictability for the next decade
proves. to be low: correlation coefficient between
the actual and predicted levels in 1989 is about 0.6
with the 90% confidence band of about +/- 0.2
m. The limit of statistical predictability for MAWL
is reached in 2 or, at most, 3 years. This means that
any engineering decision which is related to predic-
tions of mean annual levels will necessarily contain
a large degree of uncertainty. This uncertainty can
hardly be diminished by any other means but pre-
dicting the changes in the elements of the lake’s
water budget, first of all the inflow through the
Detroit River.

6. The next problem to study seems to be mod-
eling water level variations in Lake Erie as a pro-
cess created by random inputs to the dynamic sys-
tem defined by the lake’s water budget equation
(Privalsky 1988b). Reliable predictions of inflow
to the lake at small lead times can hardly be antici-
pated in the near future. Nevertheless, it seems
possible to predict probable changes in water level
statistical properties due to a given climate change
which will be based upon the solution of stochastic
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dynamic water budget equation and respective esti-
mates of water budget changes in the Great Lakes
basin.
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